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The classical boundary-layer scaling laws proposed by Howard for Rayleigh-Benard 
convection at high Rayleigh number extend to the analogous case of convection in 
saturated porous media. We computationally study two-dimensional porous-media 
convection near the onset of this scaling behaviour. The main result of the paper is the 
observation and study of instabilities that lead to deviations from the scaling relations. 

At Rayleigh numbers below the scaling regime, boundary-layer fluctuations born at 
a Hopf bifurcation strengthen and eventually develop into thermal plumes. The 
appearance of plumes corresponds to the onset of the boundary-layer scaling 
behaviour of the oscillation frequency and mean Nusselt number, in agreement with 
the classical theory. As the Rayleigh number increases further, the flow undergoes 
instabilities that lead to ‘bubbles’ in parameter space of quasi-periodic flow, and 
eventually to weakly chaotic flow. The instabilities disturb the plume formation 
process, effectively leading to a phase modulation of the process and to deviations from 
the scaling laws. We argue that these instabilities correspond to parametric resonances 
between the timescale for plume formation and the characteristic convection timescale 
of the flow. 

1. Introduction 
Simulations of buoyancy-driven convection in containers of fluid-saturated porous 

material heated from below display sequences of flows proceeding from stationary to 
chaotic, as the overall temperature difference is increased (Kimura, Schubert and 
Straus 1986, 1989; Caltagirone & Fabrie 1989; Graham & Steen 1992). As with the 
case of classical pure fluid convection, the time-dependent behaviour can be identified 
with that expected from a low-dimensional dynamical system. Questions still remain, 
however, about the fluid mechanics associated with these transitions, and in particular, 
the relationship to the classical asymptotic scaling laws first put forth by Howard 
(1964) on the basis of physical and dimensional arguments. We address these questions 
in the context of two-dimensional flows in a square container of fluid-saturated porous 
material, discussing both the onset of the scaling behaviour and deviations from it. In 
the present case, these deviations are in fact a result of instability of a simple time- 
periodic flow that obeys the classical scaling laws. 

The regime studied here is the beginning of the ‘high Rayleigh number’ regime, 
where convection is dominated by buoyancy and molecular diffusion plays little part 
in the bulk of the flow. Consider for the moment the pure fluid case, on which most 
classical analyses concentrate. A dimensional analysis that neglects diffusion altogether 
predicts Nu - Ra, 
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where % is the mean Nusselt number and R the Rayleigh number, or dimensionless 
temperature difference. The exponent in this expression is much higher than that found 
in experiments. The reason for the discrepancy is the presence of thermal boundary 
layers at the top and bottom surfaces. The assumption of the existence of a lengthscale, 
the boundary-layer thickness 6,  that is independent of the height, 2, of the box gives 

Nu - Ri. 
A more detailed analysis, presented by Howard (1964) extends this simple boundary- 
layer argument and captures much of the basic physics of convection at high R. In his 
model, the fluid and boundaries are initially motionless and isothermal. At time t = 
0, the top and bottom boundaries are impulsively heated to +:AT. Consider what 
happens at the bottom boundary. Initially no motion occurs and the transient 
conduction profile develops : 

where K is the thermal diffusivity of the fluid. At a critical time t*, this boundary layer 
destabilizes and plumes of warm fluid form, which suck fluid away from the boundary. 
This plume formation and release stage is assumed to be short compared to t*, and to 
strip the surface entirely of warm fluid, so the conduction phase recurs. Because the 
instability occurs so quickly (by hypothesis) the conduction phase dominates the 
behaviour in the boundary layer, and thus the heat transfer through the entire layer. 
Let S* = (mt*)i be a measure of the critical boundary-layer thickness and R,, be the 
Rayleigh number based on this thickness. The mean Nusselt number is dominated by 
conduction through the layer, so %-&y 1 

The critical time t* is as yet unknown, but its scaling behaviour can be found: 
t* - S*z - R-!, 

or 

where f *  is the characteristic frequency of plume formation. These scaling laws have 
been observed in experiments (Krishnamurti 1970; Turner 1973), although in general, 
the observed exponents are somewhat lower than those arising from this simple 
analysis. In the porous medium, the mechanism is the same, but since R scales linearly 
with 1 instead of cubically, the scaling laws become 

- 
NU - R, (3) 
f * - R2, (4) 

(Horne & O’Sullivan 1978) and are the foundation for the results in the present work. 
These scaling laws are also observed in experiments in porous media (Elder 1967; 
Buretta 1972) and Hele-Shaw cells (Koster & Miiller 1982). We note that experiments 
in pure fluid convection at very high R (the so-called ’hard turbulence’ regime) display 
significant deviations from the classical scaling discussed here. These deviations are 
attributable to interaction between the boundary layers and the turbulent bulk flow 
(Castaing et al. 1989). 

Howard argues that the rate limiting step in the instability of the boundary layer is 
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essentially a Rayleigh-BCnard phenomenon, so t* is determined by the critical 
thickness for this instability. However, he presents no detailed analysis of the 
instability. Foster (1965) performs numerical experiments on the linearized problem 
and finds that the instability does grow rapidly, verifying the assumption of the 
model. He also finds the predicted scaling, but does not discuss the mode of instability. 
Elder (1968) extends this work, studying numerically both the pure fluid and porous 
medium. He observes that flow occurs first within the boundary layer and only later 
do plumes burst from the layer. Thus the initial instability is indeed Rayleigh-BCnard- 
like. R,, is a critical Rayleigh number for a Rayleigh-Benard problem and t* is the time 
required to reach this Rayleigh number. The instability grows rapidly and eventually 
buoyancy dominates diffusion and plumes form and rise, drawing warm fluid out of the 
boundary layers, thereby keeping them thin. This latter stage is essentially a 
Rayleigh-Taylor flow in which diffusion plays little or no role. A simple extension of 
this model considers a uniform flow right to left over a horizontal plate heated only in 
the left half. Here the thermal boundary layer develops spatially instead of temporally. 

Kimura et al. (1986; hereinafter referred to as KSS) and Caltagirone & Fabrie (1989; 
hereinafter referred to as CF) report computational results for two-dimensional 
convection in a square of porous medium at Rayleigh numbers high enough for the 
asymptotic scalings to be observed. KSS find that between R = 550 and R = 1100, the 
following scalings are observed : 

Nu- RG, fi - Rg. 

The large deviation infi from the asymptotic scaling of R2 is due to their inclusion of 
data at low R, where the scaling is clearly not observed (cf. their figure 2). At R = 1000, 
they find two chaotic states with different dominant frequencies. Below, we show 
solutions with similar frequencies, but no broadband behaviour ; the chaos they 
observe is an artefact of insufficient spatial resolution. The results of CF are in 
agreement with ours and those of KSS through R = 600. At R = 800 and 1000, the 
frequencies remain in good agreement, but the mean Nusselt numbers are consistently 
high. Furthermore, their frequency spectra are difficult to interpret, as the baselines are 
only two decades below the highest peaks, making any weak chaos or quasi-periodicity 
invisible. It is possible that they have jumped to different solutions. Having made these 
caveats, we note that the asymptotic frequency scaling fits roughly through their 
results. They find three-frequency behaviour at R = 1000 and R = 1200, and chaos at 
R = 1350 and R = 1500. At higher R, the single roll mean flow breaks down as plumes 
invade the interior of the flow. 

We computationally study the regime from R = 600 to 1250 in the square of 
saturated porous medium. The dominant behaviour in this regime centres on the time- 
periodic flow born at a Hopf bifurcation (convected boundary-layer instability) from 
the steady roll pattern at R = 544 (cf. Graham & Steen 1992; hereinafter referred to 
as GS) and subsequent bifurcations from this periodic flow. Figure 1 is a schematic 
bifurcation diagram that places the regime of interest in the larger context. Following 
the conduction and steady regime of interest in the larger context. Following the 
conduction and steady convection regimes is a ‘travelling wave’ regime. Travelling 
waves are time-periodic boundary-layer fluctuations with spatial wavenumber n, each 
born at a Hopf bifurcation. Modal interactions of these waves lead to quasi-periodic 
mixed modes (the quasi-periodic branches are not shown on figure 1). GS focuses on 
the latter regime which ends where the regime of interest in this paper begins. The 
remainder of this paper is devoted to explaining the details of the scaling regime shown 
schematically in figure 1. 
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FIGURE I. Overall bifurcation diagram, from conduction to steady convection to weakly interacting 
periodic fluctuations to the Howard scaling regime studied in this paper (R = 70G1200). 
Wavenumbers of boundary-layer fluctuations are denoted by n. 
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FIGURE 2. and f, us. R on the centrosymmetric branch originating at the birth of the n = 9 
periodic flow. Dashed curves indicate the boundary layer scaling laws discussed in the text. 

Figure 2 provides a guide for the outline of the paper. It shows results of initial-value 
problems in the regime 600 < R < 1050. We discuss first the onset of asymptotic 
scaling, which occurs near R = 700, when fluctuations in the boundary layers reach 
sufficient strength to form plumes. Compare the results on figure 2 with the dashed 
lines representing the asymptotic scaling laws, equations (3) and (4). Above the onset 
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of scaling, the periodic flow undergoes a number of bifurcations leading to ‘bubbles’ 
of quasi-periodic flow. The deviation from asymptotic scaling between R = 950 and 
R = 1050 on figure 2 corresponds to one such bubble. The classical fluid dynamical 
example leading to such bifurcation behaviour is the instability of a horizontal fluid 
layer in a vertically vibrating tray, first studied by Faraday (see Drazin & Reid 1981). 
The linear stability problem for this system reduces to a Mathieu equation, the classical 
example of a parametrically forced system. However, the destabilizing forcing is 
imposed externally in the Faraday problem, whereas here the excitation arises 
internally, from the periodic plume formation and convective processes themselves. 
Using the scaling laws and equations for fluctuations from the periodic flow, we discuss 
the dominant balances that govern the instability. At R = 1200 and R = 1250, weakly 
chaotic solutions are found. The spatial behaviour in this regime is essentially similar 
to that in the quasi-periodic regimes at lower R. 

2. Governing equations and computational techniques 
Consider a closed, square box of height I, filled with a fluid-saturated porous medium 

(Joseph 1976). Flow within is described by Darcy’s law and the inertia terms are 
neglected (i.e. the dimensionless permeability K = k/F of the medium is assumed to be 
very small). The horizontal top and bottom are isothermal with the bottom warmer 
than the top; when no motion occurs, a linear temperature gradient is present in the 
medium. The vertical walls are adiabatic. The buoyancy of the fluid is described by the 
Oberbeck-Boussinesq approximation; the variable density of the fluid is retained only 
in the body force term of the momentum equation. All other physical properties are 
constant. Under these conditions, the dimensionless equations for deviations from the 
linear thermal conduction profile To =+- z are 

v*v = 0, 
O = - W p - U + R O k ,  

ae -+v.(V0- 
at 

k)  = V20 
(5) 

W0.n = 0 on sidewalls, x = -ki, 
0 = 0 on top and bottom, z = - +1 2, 

van = 0 on all boundaries, 
where v , p  and 0 are the velocity, pressure and temperature deviations, respectively. The 
Rayleigh number is R = gaATkl/K, v where a is the coefficient of thermal expansion of 
the fluid, g is the magnitude of gravity, AT is the temperature difference between 
bottom and top, v is the kinematic viscosity and K, is an effective thermal diffusivity 
of the fluid-solid mixture. The scales are, for velocity ~ , / l ,  temperature AT, length 1 
and time PC/K,, where C is the ratio of volumetric heat capacity of the saturated 
medium to that of the fluid. In terms of the formulation given here, the instantaneous 
dimensionless heat transfer rate, or Nusselt number, Nu, is given by: 

and the mean Nusselt number % is: 

% = lim +loT Nu(t) dt. 
T-IX 

(7) 
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It is convenient to reformulate (5 )  as a single integro-differential equation for 0 
(Steen 1986); the scalar temperature field determines the velocity field uniquely. The 
energy equation can be rewritten : 

(8) 
a8 -+ ( -Vp+RBk)*(VO-k)  = V28.  
at 

Taking the divergence of the momentum equation and applying continuity leaves a 
Poisson equation with Neumann boundary conditions for the pressure : 

Vzp = RV0- k .  (9) 
This equation can be inverted to give an integral equation for p in terms of 8 and the 
result inserted into (8). 

It is often desirable to enforce the restriction of 'centrosymmetry' to study solutions 
that are otherwise unstable. Centrosymmetric solutions satisfy : 

8(x, z )  = - 0( - x, - z) ,  

T(x,z) = I-T(-x, -z). 

(10) 

(1 1) 

or in terms of the original temperature field T(x ,y ) :  

Computations for this study use primarily the initial-value problem (IVP). A 
pseudo-spectral collocation formulation is used for spatial discretization of the 
governing equations (8) and (9). Chebyshev polynomials are used in the vertical 
direction and trigonometric functions in the horizontal. Chebyshev polynomials are 
chosen because of their ability to resolve boundary layers more efficiently than 
trigonometric polynomials (see e.g. Canuto et al. 1988; Boyd 1989). The techniques 
used here are standard and will not be discussed in detail. Differentiation of the 
approximate solution can be performed two ways : by transforming from physical to 
spectral space and using a recurrence relation for differentiation of Chebyshev 
polynomials, or by use of a matrix operator (given in Canuto et al. 1988) relating a 
quantity and its derivative directly. The latter form is preferred when the Jacobian is 
desired (as when performing parameter continuation), but the former may be more 
efficient because FFTs can be used to flip from physical to spectral space and vice versa. 
Authors differ on which technique is more efficient on vector processors (Fornberg 
1990; Canuto et al. 1988); the matrix multiplication form is used here. 

Dirichlet boundary conditions are applied by simply setting 8, = 8, = 0, where Si is 
the solution at the ith collocation point (considering for the moment only one 
dimension). Neumann boundary conditions can be applied implicitly by modifying the 
differentiation matrix D such that DOi 8, = D N j  Sj = 0. This formulation does not 
satisfy the boundary conditions exactly, but the error decays spectrally (Canuto et al. 
1988). 

For time discretization, a second-order accurate operator splitting method is used. 
The convective portion of the energy equation is advanced explicitly, using a second- 
order Adams formula: 

8* - e n  

At -= -i((Vpn + R P k ) .  (0s' - k))  +;((Vp"-' + R8n-1k)*(V8n-1 -k) ) .  (12) 

The superscripts represent the timesteps. The asterisk represents an intermediate 
solution. An eigenvalue-eigenvector decomposition is used to solve the Poisson 
equation (9) for the pressure (Haidvogel & Zang 1979). Most of the work in this step 
can be performed in a preprocessing step, so only O(W) operations are required at 
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each timestep. The timestep is completed with a Crank-Nicholson step for the 
Laplacian : 

(13) At =v2( ). 
This can also be solved by the eigenvalue-eigenvector decomposition. 

Spatial resolution has been checked carefully; all of the results presented are 
insensitive to changes in resolution. The results for 900 < R < 1050 are from 
simulations with 64 Fourier modes in the horizontal direction and 48 Chebyshev in the 
vertical and timestep At = 5 x Simulations at higher R use 72 or 84 Fourier 
modes. 

As a supplement to some of the IVP computations, pseudo-arclength continuation 
with the subroutine package AUTO (Doedel 1981) is used to compute periodic 
solutions and their bifurcations. Details of the implementation can be found in GS. 

3. Review of behaviour at low and intermediate R 
Figure 1 shows a schematic bifurcation diagram. When R < 4x2, all disturbance 

decay to the linear thermal conduction profile 8 = 0. This solution is globally stable 
(Beck 1972). The two-dimensional unicellular (single roll) flow in which we are 
interested is born at a pitchfork bifurcation at R = 4n2. This steady flow remains stable 
until R = 382, when convected fluctuations in the thermal boundary layers near the top 
and bottom of the containers destabilize the steady state in a Hopf bifurcation. Just 
above this bifurcation a stable time-periodic state is found. The destabilizing thermal 
fluctuation can be assigned a wavenumber n = 4, the number of pairs of extrema of 
disturbance structure. At slightly higher R, this flow becomes unstable with respect to 
fluctuations with wavenumber n = 5,  which is the first wavenumber to bifurcate if 
centrosymmetry is enforced (KSS; Aidun & Steen 1986, 1987). As R is increased 
further, the (now unstable) steady flow exhibits a sequence of Hopf bifurcations, each 
corresponding to a convected boundary-layer instability of a particular integer 
wavenumber (Steen & Aidun 1988; GS). At each transition, the frequency is 
proportional to the wavenumber and the velocity of the steady circulation. The 
observed stable time-dependent behaviour in the regime 400 < R < 700 consists of 
overlapping intervals of periodic and quasi-periodic (two-frequency) behaviour (KSS ; 
GS). At the end of this regime, the n = 9 periodic flow is stable. It can be shown that 
all of this behaviour arises from mode interactions between the various limit cycles 
born at the Hopf bifurcations (GS). The quasi-periodic flows are essentially nonlinear 
superpositions of a steady state and two time-periodic fluctuations of different 
wavenumbers. In a sense, then, all of the dynamics below R = 700 occur 'close' to the 
original steady unicellular solution and its Hopf bifurcations. 

4. Boundary-layer scaling and plume formation 
When R > 606, near the end of the regime just discussed, the n = 9 limit cycle is 

stable. This branch is where the present study begins. Above R = 700, until it becomes 
unstable at about R = 950, the n = 9 solution obeys to a good approximation the 
asymptotic scaling laws for time dependence and heat transfer predicted by Howard's 
theory. We discuss in this section the onset of scaling. The actual least squares curve 
fits, for results between R = 700 and 925 are f - R'.95, Nu - R1.15; the variances for the 
exponents are 0.33 and 0.21, respectively. Figure 2 shows how the frequency and mean 
Nusselt number change as R increases. The dashed line show the slopes of the 
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FIGURE 3. Temperature field on the centrosymmetric (n = 9) branch, R = 700, showing the formation 
of a plume. In this figure, and in figures below, the overall circulation of the flow is clockwise. In this 
figure, and in all figures showing contours of the total temperature field, the interval between contour 
levels is 0.1. 

asymptotic laws, indicating how well these laws match the data. For clarity, the results 
in this figure are from solutions restricted to centrosymmetry. In the following sections 
we relax this restriction. Recall that at the Hopf bifurcation, the frequency is 
proportional to the steady circulation velocity, so that Howard scaling is not expected 
near the transition. The abrupt deviation from scaling at R = 950 corresponds to a 
quasi-periodic flow that we analyse Q 5 .  

One of the key elements in the physics of the asymptotic theory is the formation of 
thermal plumes, as fluctuations born in the boundary layer grow and eventually move 
fluid out of the boundary layer. Thus we expect to see plumes forming in this region 
of scaling behaviour. At the onset of this oscillation at R = 544, the fluctuations are 
infinitesimal, growing as they are convected across the horizontal isothermal surfaces. 
These fluctuations grow to greater strength as R increases. By about R = 6 15, a warm 
blob in the bottom boundary layer is just beginning to form a plume as it reaches the 
downstream end of the layer (and correspondingly a cold plume is forming in the top 
boundary layer). As an operational definition, we say that a plume has formed when 
an isotherm in the boundary layer has buckled to the extent that some portion of it 
becomes nearly vertical (away from the downstream corner). By R = 700, the plume 
forms far enough upstream to be distinct from the turning region in the corner (see 
figure 3) whereas at R = 900, the plume forms at about the centre of the layer. The 
Howard scaling begins to be valid above about R = 700, so as expected, the condition 
for this scaling is the formation of distinct plumes. Figure 4 shows one period of the 
temperature field at R = 900, showing the plume progression. What we see here is 
essentially the spatially developing version of the process described by Elder (1968); 
plume formation and thus Howard scaling does not occur until the fluctuations grow 
rapidly enough to reach the Rayleigh-Taylor stage before being convected out of the 
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FIGURE 4. One period of oscillation on the centrosymmetric branch at R = 900. This sequence 
shows temperature T through the entire plume formation process. Time proceeds clockwise. 

downstream corner of the boundary layer. During this gradual transition, there is no 
change in the dynamical picture of the solution; it is still a limit cycle, but the formation 
of plumes represents an important physical effect. 

Between R = 800 and R = 850, another manifestation of the boundary-layer 
behaviour appears, as the wavenumber of the fluctuating part of the temperature field 
f increases from n = 9 to n = 11. This fluctuating part is defined as 

f ( x ,  Z ,  t )  = T(x, Z ,  t )  - T(x, Z, t )  dt. l'*' 
The transition arises as an extremely small, weak blob appears at the upstream end of 
boundary layer; one blob becomes three. Figure 5 shows snapshots of the fluctuation 
at R = 800 and R = 850. The evolution of the pattern is smooth; no bifurcations occur. 
This transition is a consequence of the boundary-layer mechanism at work at these 
high Rayleigh numbers. The boundary-layer thickness 6 scales as R-'. Since the 
Rayleigh-Btnard mechanism drives the fluctuations, their wavelength h scales as 6 and 
therefore as R-'. Thus the wavenumber is expected to increase with R. In a container, 
the wavenumber is quantized, so the scaling cannot be observed exactly. Nevertheless, 
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FIGURE 5. Snapshots of instantaneous temperature fluctuations f from the mean field at R = 800 (a) 
and 850 (b) on the centrosymmetric branch, showing the change in wavenumber from 9 to 11. 
Wavenumber is computed as one-half the number of sign changes in the fluctuation field around the 
perimeter of the container. The contour interval for plots of fluctuation fields varies from figure to 
figure, depending on the amplitude of the fluctuation. 

the transition from one wavenumber to another can be smooth, as the additional 
fluctuations appear at infinitesimal amplitude. The distance of the plume breakoff 
point from the upstream corner also scales as R-' in the asymptotic theory, and we find 
in the simulations that as R increases, the plumes form further upstream, in qualitative 
agreement with the theory. 

5. Instabilities and deviations from scaling 
The major subject of this work is the behaviour at Rayleigh numbers above the onset 

of the Howard scaling. This section centres on the instabilities that disrupt the scaling 
behaviour and how they are related to the underlying physics of the plume formation 
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FIGURE 6. Schematic bifurcation diagram for the range 800 < R < 1050. Results at higher R are not 
included because that regime was not studied in detail. The two horizontal lines are the asymmetric 
(top) and centrosymmetric limit cycles. , bifurcation points; -, stable solutions; ---, unstable 
solutions. Dotted curves (not encircled) are stable only in the centrosymmetric subspace. Instabilities 
of quasi-periodic flows are encircled; the resulting jumps between branches are indicated by arrows. 

process. The section is divided into three parts. First, we discuss the observed changes 
in time dependence and construct a schematic bifurcation diagram, using results from 
a large number of simulations. Secondly, we present the spatial structures that arise 
at the instabilities found in the previous subsection. We also discuss the relation of 
these structures to the plume formation process and to the observed deviation from 
Howard scaling. Finally, we show how the observed results are related to the structure 
of the scaled governing equations and present a phase space scenario consistent with 
the behaviour. 

5.1. Bifurcation behaviour and time dependence 
We noted above that the ‘bubble’ of deviation from the boundary-layer scaling in 
figure 2 corresponds to a quasi-periodic flow. In this subsection, we describe this 
behaviour in more detail. The culmination of the discussion is a schematic bifurcation 
diagram showing a number of bubbles of quasi-periodic behaviour, corresponding to 
instabilities of two periodic flows of different wavenumbers (figure 6). We begin by 
considering only the space of centrosymmetric solutions, and later relax the constraint. 
The space of centrosymmetric solutions is invariant, so that connections to non- 
centrosymmetric branches can only occur via symmetry breaking bifurcations. 
Restriction to the centrosymmetric subspace allows the consideration of solutions that 
would otherwise be unstable, and thus allows the completion of the picture of one 
bubble of quasi-periodic behaviour. We use this case as a paradigm for the behaviour 
of the unconstrained system, where computational limitations prevent a complete 
picture from being resolved. 

When R = 925 the centrosymmetric ‘ n  = 9’ limit cycle (now with wavenumber 11, 
cf. $4) is linearly stable with respect to both centrosymmetric and non-centrosymmetric 
disturbances. We consider in this paragraph centrosymmetric deviations from this 
state. Between R = 925 and R = 950, the flow undergoes a supercritical torus 
bifurcation. At R = 950, with initial conditions from R = 925, a stable quasi-periodic 
state is found, withf, = 404 f 2, f, = 176 i- 2, = 10.80. The frequency f, denotes the 
limit cycle frequency and f, the secondary frequency that arises at the bifurcation. 
Figure 7 shows the frequency spectra of Nu(t) at R = 950 and R = 1025. The 
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FIGURE 7. Spectra of Nu on the centrosymmetric quasi-periodic solution at (a) R = 950, (b)  1025. 

bifurcation leads to a deviation from the boundary-layer behaviour, as andf, fall 
below the interpolation of the Howard scaling behaviour. This disruption is especially 
clear on the curve of actually 
decreases. As R increases, f ,  and f ,  evolve smoothly and f ,  remains close to $fi. The 
deviation from locking is indicated by a low-frequency spectral peak. Between 
R = 1025 and 1040, the solution becomes periodic again asf, disappears. The variance 
of Nu(t) in the quasi-periodic bubble is higher than in the periodic regimes on either 
side. As the flow becomes periodic again,f, and resume the Howard scaling (figure 
2). At R = 1050, the wavenumber has evolved to n = 13. The pair of torus bifurcations 
that bound this quasi-periodic regime can also be found directly by continuation 
methods. 

us. R on figure 2. Between R = 950 and R = 975, 
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FIGURE 8. Spectrum of Nu on the non-symmetric quasi-periodic solution at R = 1025. 

We now remove the constraint of centrosymmetry and find additional quasi-periodic 
behaviour similar to that found in the centrosymmetric space. A bubble of period- 
doubled solutions is found, as well a other quasi-periodic flows. These all disrupt the 
scaling behaviour, just as in the centrosymmetric case. 

At R = 925 and R = 1050, the start and end points of the previous paragraph, the 
centrosymmetric limit cycle is stable in the unrestricted space. This discussion begins 
at R = 1050, and we proceed by reducing R. Reducing R to 1040 introduces the 
subharmonic ifl of the limit cycle frequency into the flow. Thus a subharmonic 
bifurcation occurs from the centrosymmetric limit cycle between R = 1040 and 1050. 

Reducing R to 1025, the spectrum shows in addition to the subharmonic off,, the 
frequencyf, corresponding to the centrosymmetric quasi-periodic (QP) state here. This 
non-centrosymmetric state is a mixed mode formed by interaction between the two 
branches. Locking occurs at f, = 16 (f, = 1 3f,, i f l  = 1 5fL);  the harmonics off, are 
evident in the spectrum (figure 8). Upon decreasing R from 1025,f,,f2 and remain 
close to the values on the centrosymmetric branch and the subharmonic persists (see 
figure 9). At R = 1000 the frequencies and are close to those found by KSS, but they 
claim that the solution is chaotic. We find chaotic behaviour on this branch only if the 
resolution is insufficient. At R = 975, spectra of centrosymmetric and mixed states are 
distinguishable, but from initial conditions on the non-centrosymmetric QP solution, 
the Nusselt number evolution of the centrosymmetric and mixed states are virtually 
identical over at least 2 of a diffusion time. That is, the mixed mode becomes more like 
the centrosymmetric state as R decreases. If R is decreased to 950, a drastic change in 
behaviour occurs. The solution jumps to a stable non-centrosymmetric limit cycle with 
a wavenumber n = 12. Thus, there exists a regime somewhere between R = 925 and 
975, where the branch based on the centrosymmetric limit cycle is unstable with respect 
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FIGURE 9. Frequencies of the centrosymmetric and mixed mode quasi-periodic solutions based on 
the centrosymmetric limit cycle. 

to the non-centrosymmetric one. This regime of instability makes it impossible to 
determine exactly the fate of the subharmonic branch through IVPs. However, recall 
that at R = 925 the centrosymmetric limit cycle branch is linearly stable. At R = 1050 
it is again linearly stable whereas at R = 1040, it is unstable to the subharmonic state. 
Therefore, a destabilizing bifurcation with an unstable manifold corresponding to the 
subharmonic structure must occur somewhere above R = 925. The presence of the 
mixed mode down to R = 975 suggests that the subharmonic branch simply rejoins the 
limit cycle, resulting in a second bubble. In principle, the subharmonic branch could 
be traced by continuation, although the computational cost of this would be 
prohibitive because the restriction to centrosymmetry could no longer be applied. 
Other scenarios are possible, but seem less plausible than the one above, both because 
the one above is the simplest and because the analogous scenario in the centrosymmetric 
subspace is observed directly. 

We discuss briefly the behaviour on the non-centrosymmetric (n  = 12) limit cycle 
branch found at R = 950. At R = 1000, the solution on this branch becomes quasi- 
periodic with f, = 458, f, = 157. KSS find a chaotic state with almost identical 
dominant frequencies; again the chaos is apparently due to insufficient resolution. At 
R = 1025, the solution is unstable, as the flow evolves toward the mixed mode quasi- 
periodic solution discussed above. Similar behaviour occurs as R is reduced from R = 
950. At R = 925, the solution becomes weakly quasi-periodic (small variance in Nu(t)), 
at R = 900 the solution is strongly quasi-periodic (large variance) and at R = 875, the 
solution jumps back to the centrosymmetric limit cycle. By using a large step in R the 
stable non-centrosymmetric limit cycle can be found again at R = 800. As above, we 
conjecture that the quasi-periodic branch masked by instability is a simple bubble. 

The above transitions are summarized in the schematic bifurcation diagram, figure 
6. The diagram is not complete, as unstable non-centrosymmetric quasi-periodic 
solutions cannot be traced. However, the dotted lines (encircled) indicate where the 
bubble structure has been assumed, based on the arguments presented above. In $5.2, 
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we show the similarities between the spatial structures that arise in these quasi-periodic 
regimes, further strengthening the analogy with the centrosymmetric case, where the 
bubble is found directly. Before discussing these structures, we describe some 
behaviour found at higher R. 

The behaviour described in detail above persists at higher Rayleigh numbers and 
eventually weakly chaotic behaviour is observed. At R = 1100, a centrosymmetric 
quasi-periodic state born near R = 1090 becomes unstable to a quasi-periodic state 
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FIGURE 11. Snapshots of T of the secondary structure (a and c) and total (b and d )  at times l/f, 
apart on the centrosymmetric quasi-periodic solution at R = 950. 

based on the asymmetric limit cycle. A similar solution is found at R = 1150 and 
weakly chaotic solutions are found at R = 1200 and 1250. Figure 10 displays spectra 
of a quasi-periodic solution at R = 11 50 and a chaotic one at R = 1200. The length of 
the time series and number of samples are identical in the two cases. The difference in 
background level clearly shows the distinction between quasi-periodic and chaotic 
signals. The chaotic motion occurs via period doubling, as frequencies ifl, ifl and ifl 
are discernible in the spectrum at R = 1200 andf, is close to if,. 

Care has been taken to assure that the chaotic solution at R = 1200 is not spurious. 
With 48 Chebyshev polynomials in the vertical direction, giving grid spacings of 
O(5 x in the boundary layers, vertical resolution is more than sufficient. Runs 
with 72, 80 and 84 Fourier modes in the horizontal direction all give spectra with 
similar structures. The peaks at f, = 640 and f, = 232 persist at all three truncations. 

5.2. Spatial structures and physical processes 
As discussed above, the onset of Howard scaling corresponds to the formation of 
plumes. Thus, on physical grounds it is expected that deviation from these scaling laws 
is associated with disruption of the plume formation process, i.e. some change in the 
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FIGURE 12. Snapshots of T :  the subharmonic secondary structure (a and c) and total (b and d )  at 
times 1/2f1 apart on the subharmonic solution at R = 1040. 

dynamics of the boundary layers. One possible source of such a disruption can be seen 
in figure 4, where a fluctuation in a plume originating in, say, the bottom boundary 
layer may be strong enough to distort the upstream end of the top boundary layer, 
where cold plumes begin to form. In short, disruption of Howard scaling represents 
communication between top and bottom because the heat transfer now depends on top 
to bottom distance. In this subsection, we illustrate the changes in the spatial structures 
that are associated with quasi-periodicity and the deviation from scaling. These 
secondary structures are obtained by Fourier analysing the original temperature fields 
in time, filtering out the mean, the plume formation frequency and its harmonics and 
displaying the remainder. 

Figure 11 shows the instantaneous temperature field and the secondary structure 
(the primary structure being that of the periodic plume formation) at two instants l/h 
apart for the centrosymmetric quasi-periodic flow at R = 950. Extrema in the 
magnitude and gradients of the secondary structure occur exactly at the positions of 
the plumes and travel with the plumes. In addition, the disturbance changes sign on a 
curve that passes vertically through each plume. This locus of sign-change effectively 
shifts the horizontal position of each plume, so with each plume formation cycle the 
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plumes differ slightly in position relative to one another; each plume forms slightly 
upstream or downstream of the mean position of formation. In essence, then, the 
instability is a phase modulation of the plume formation process. This point will be 
discussed further in the next section. 

Very similar structures arise in all of the other quasi-periodic bubbles. Figure 12 
shows the secondary structure at R = 1040. This structure is invariant under rotation 
by TC, apparently a manifestation of the resonance phenomenon causing the 
subharmonic bifurcation. This is not a centrosymmetric fluctuation, as centrosymmetry 
is defined as invariance under rotation by 71: and sign change. The plume formation 
process is simpler here than in the case at R = 950. When the flow is simply periodic, 
every plume is identical, modulo a shift in time. In this subharmonic case, every other 
plume is identical. In truly quasi-periodic cases, no two plumes are identical. The 
results for the mixed mode and the quasi-periodic flows based on the non- 
centrosymmetric limit cycle are very similar (Graham 1992). A similar structure is also 
found in the chaotic flow at R = 1200. Figure 13 shows snapshots of the secondary and 
total structures at R = 1200. The secondary structure is similar to those at lower R, 
except that large amplitudes are present further upstream in the boundary layers. This 
is consistent with the structures at lower R, because plumes form further upstream as 
R increases. 

5.3. Instability mechanism and nonlinear dynamics 
The bifurcations and associated physical structures described above are not observed 
at lower Rayleigh number, where boundary-layer plumes are absent. However, before 
considering the regime of plume formation, it is instructive to review the dynamics of 
the lower Rayleigh number regimes. Plume production may be regarded as one stage 
in an evolving struggle between horizontal and vertical lengthscales for dominance of 
the overall (vertical) heat transport. 

In the steady convection regime Robinson & O’Sullivan (1976) have shown that 
horizontal convection balances diffusion where the time for travel across the bottom 
of the box t - R-3. Furthermore, 13 - Rf which gives - RO. Steady convection is 
unstable to travelling waves. The base state velocity convects thermal disturbances 
around a loop for these waves. The spatial structure of the disturbance (wavenumber 
n) is determined primarily by a balance of diffusion in the loop direction with 
convection (Steen & Aidun 1988). The relevant timescale is the time for a disturbance 
to sweep across the bottom (or top). The corresponding travelling wave or ‘sweep’ 
frequency isf-  n d .  It is observed that n is invariant along branches in this regime 
(GS). There, periodic motions compete with quasi-periodic motions and the dynamic 
behaviour is understood in terms of coupled nonlinear oscillators of nearly the same 
strength. The end of this regime occurs as vertical transport in the boundary layers 
begins to dominate horizontal transport. This also marks the beginning of the next 
regime, the Howard scaling regime. It has particularly simple scaling properties since 
6 is independent of box size, as outlined above. The dominant balance is between 
vertical diffusion and unsteadiness close to the isothermal boundaries. One feature of 
this balance is that wavenumber is no longer preserved along branches. For example, 
a smooth transition from an n = 1 I to n = 13 wavenumber occurs, as pointed out 
above. 

We now focus on the regime of Howard scaling and deviations from it (700 < R < 
1200). The base state is the time-periodic flow of the n = 9/11/13 branch and satisfies 

a6 
at 
- = V28-i7*(Vfi-k) .  
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FIGURE 13. Secondary fluctuation and total temperature at an instant, R = 1200. 

Consistent with the above discussion of the scaling laws, 

fi - O(R), Ve - O(R), f, - O(R2) 

The relevant timescale for the periodic base state is the plume frequency f,. However, 
we expect that the sweep frequency, which now varies as l/fi - R-l, is the relevant 
timescale for the instability. Using the above expressions to rescale the periodic 
solution and time, the linearized disturbance energy equation becomes 

(1 5)  
a i  
at 

R - = - R{ fi * Vi + 6 -  VG} + {V28 - 6 .  k}.  

This result suggests that the convective and time dependent contributions to the 
disturbance equation provide the dominant balance, and are O(R) larger than the 
dissipative term, except where very steep gradients exist in 6. From the plots of the 
secondary structures, it can be seen that steep gradients are very localized, so in 
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general, the above ordering of terms is valid. As R is increased, the plume and sweep 
frequencies come into resonance, f -  f,, near the bubble of deviation from Howard 
scaling. This is consistent with the appearance of a second frequency f, - if,, typical 
of parametric resonance (see e.g. Nayfeh & Mook 1979). The time-periodic coefficients 
in the linearized disturbance equations represent an oscillator whose strength has 
grown with Rayleigh number since inception ( R  = 544) and which is now strong 
enough, in contrast to its role at lower R, to be a forcing oscillator. Parametric 
instability occurs. 

To understand this resonance better, we attempt to identify a mechanism for the 
process. One timescale is the time for the plume formation process, l/(f,), which is 
O(R-'). The second important timescale is the sweep time across the top and bottom 
which is O(R-') and in dimensional terms depends on 1. The ratio between sweep time 
and plume formation time changes continuously with R. At lower R where plume 
formation is very weak, the sweeping action entrains the plumes. At higher R, as the 
system moves in and out of timescale ratios where it is susceptible to resonance, 
instabilities can ensue. One can imagine that the instability process occurs like this: a 
fluctuation in the bottom boundary layer causes a plume to form just a little bit early 
causing a horizontal compression of the wavetrain (and vertical expansion). This leads 
to two plumes being slightly closer to each other than they would otherwise be. These 
two plumes together do a slightly better job of cleaning cold fluid of the boundary layer 
than usual. This leads to a little longer induction time for the next plume to form, a 
larger interval between plumes and a slightly worse job of cleaning out the boundary 
layer. Thus the next plume forms a little early and the flow develops a phase-modulated 
train of disturbances. If the timing of the intervals between disturbances in the 
wavetrain resonates with the timing of plume formation, a phase modulated state is 
sustained around the loop. The average effect is a decrease in the heat transfer. A 
variant of this mechanism views the plume modulation as due to direct communication 
from bottom to top across the box (and vice versa), not through the wavetrain around 
the loop. In either case, as R increases further, the frequencies move out of resonance, 
the plumes strengthen and accordingly their physics dominates. Again, f, emerges as 
the only relevant timescale at higher R (until the next resonance occurs). 

Lennie et al. (1988) find somewhat similar behaviour in their simulations of 
convection of a volumetrically heated fluid cooled from above. In a rectangular 
container with aspect ratio (horizontal size to vertical size) h = 1.5, the single roll 
steady state is destabilized at a Hopf bifurcation, above which two cold blobs circulate 
with the bulk flow. At a period-doubling bifurcation, one of these blobs becomes more 
prominent than the other ; they interpret this change as a resonant spatial modulation 
of the blob structure, an amplitude modulated wave. They then draw analogies with 
the work of Rand (1982), who discusses modulated travelling waves in the fully 
symmetric context of rotating flows. There is then a period-doubling cascade to chaos, 
followed by a reverse cascade leading back to the same periodic branch from which the 
sequence started. In short, they find a bubble of subharmonic (and more complicated) 
behaviour superficially similar to what we find here. However, they do not analyse the 
spatial structures in detail, so their results cannot be directly compared with ours. 
Furthermore, we observe phase modulation rather than amplitude modulation; 
nevertheless their results are, to our knowledge, the most closely related to ours that 
have been found. 

Finally, we discuss a possible phase space scenario for the jumps from the quasi- 
periodic branches. The scenario is not unique in describing the observed behaviour, but 
it is, we believe, the simplest. The new quasi-periodic structures have a tendency to be 
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FIGURE 14. A sequence of phase portraits showing a possible scenario for jumps between limit cycle- 
based solutions. (a)  The orientation of the limit cycles. The origin is the unstable steady roll. (b) The 
limit cycles and unstable mixed mode on a horizontal axis representing the separatrices connecting 
them. (c) A sequence of bifurcations. The vertical axis represents the amplitude of a secondary (quasi- 
periodic) disturbance structure. 

unstable, as jumps from these states to states based on the other limit cycle have 
occurred in every case. Perhaps it is because they reduce heat transfer efficiency, 
allowing perturbations to grow. Regardless of the physical mechanism, it appears that 
all jumps are associated directly with instabilities of quasi-periodic states, not of the 
limit cycles themselves. At R = 800, both the centrosymmetric and non-centro- 
symmetric limit cycles are stable, so locally, the phase space (of oscillation amplitudes) 
appears as shown in figure 14(a). The origin is the steady one-roll state, the two limit 
cycles are on the axes and are separated by an unstable mixed-mode quasi-periodic 
solution. Figure 14(b) shows the limit cycles and mixed mode on a horizontal axis 
corresponding to the separatrices connecting the mixed mode to the limit cycles. This 
mixed mode is due to the interaction between limit cycles (cf. GS), not tori, and should 
not be confused with the mixed mode of the previous section. The vertical axis on this 
figure represents the amplitude of secondary Hopf (torus) bifurcations discussed 
above. Figure 14 (c) shows a possible bifurcation scenario. A quasi-periodic solution is 
born from one of the limit cycles. It interacts with the mixed mode and becomes 
unstable at large amplitude, thus causing the jump to the alternate limit cycle. As R 
increases further, the amplitude decreases and the quasi-periodic solution regains 
stability, finally vanishing again, leaving the limit cycle stable. This scenario is 
applicable to all of the quasi-periodic bubbles found. 
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6. Conclusion 
The Rayleigh number regime studied here (600 < R < 1250) is characterized by 

thermal plumes and overall follows the classical high R asymptotic scaling behaviour. 
The plumes drive resonant instabilities that lead to windows of quasi-periodic, 
subharmonic or weakly chaotic behaviour. The plume formation process is disrupted 
in these windows, causing deviations from the simple scaling behaviour. These 
deviations may actually decrease as R increases. The instability is essentially a phase 
modulation of the plume formation process. To our knowledge, resonant bifurcations 
giving windows of quasi-periodic behaviour have not been previously observed in 
either pure fluid or porous media convection. 

The model of Howard predicts a single characteristic frequency, the rate of plume 
formation. It is interesting to ask how this model and frequency are related to the 
multiple frequencies and broadband spectra associated with quasi-periodicity, chaos 
and turbulence in convection. This study implicitly gives a partial answer to this 
question. The plumes that are an essential component of the model are not independent 
from each other, but interact nonlinearly and in the present case resonantly. A better 
understanding of the phenomena described here may prove important in understanding 
the dynamics of plumes in convection at even higher R. 
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